Abstract

Gene dispersal among populations of a species is an important force influencing their genetic structure. Dispersal may also occur between taxa that would normally be isolated when nonendemic, domesticated or transgenic species are planted within the natural range of interfertile taxa. Such a mosaic of populations is typical of many agricultural landscapes, and investigations are needed to assess the risks of genetic contamination of the endemic populations but a combination of approaches may be necessary because of the limitations of research in this landscape. This study used microsatellite markers and a range of analyses (mating system, paternity exclusion, Bayesian assignment) to examine gene dispersal between remnants of the endemic Eucalyptus loxophleba ssp. supralaevis and a plantation of a nonendemic subspecies. Our results indicate that remnant populations are connected by significant dispersal to pollen sources up to 1.94 km away including the plantation. The combined analyses showed that the pollen pool and outcrossing rates of individuals within remnants varied significantly probably because of asynchronous flowering and that the likelihood of paternity was not correlated with spatial proximity. More than half of all progeny had male parents from outside their stand with the largest proportions estimated to come from the plantation by exclusion (42.4%) or Bayesian analyses (18.8-76%). Fragmentation may not be associated with decreased gene dispersal between populations of tree species, natural or planted, so that the distances required to buffer endemic trees in fragmented rural landscapes are likely to be large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.