Abstract
1. We have compared the effects of ouabain on the maintenance of gap junctional communication in rat aortic A7r5 smooth muscle cells, monkey COS-1 fibroblasts and human HeLa epithelial cells. 2. Ouabain (1 mM) interrupted dye coupling between confluent A7r5 cells within approximately 1 h, and high concentrations of ouabain were similarly required to reduce coupling between COS-1 cells selected to express the rat alpha1 Na+/K+-ATPase subunit, which is ouabain resistant. By contrast, low concentrations of ouabain (1-10 microM) attenuated dye transfer in wild-type COS-1 and HeLa cells, whose endogenous alpha1 subunits possess relatively high affinity for the glycoside (Ki approximately 0.3 vs approximately 100 microM) Ouabain-induced reductions in dye transfer therefore correlated with the ability of the glycoside to bind to the Na+/K+-ATPase isoenzymes expressed in these different cell lines. 3. No consistent relationship between inhibition of intercellular dye transfer and secondary changes in [Ca2+]i or pHi could be identified following incubation with ouabain. 4. In separate experiments, the effects of ouabain on real-time trafficking of connexin (Cx) protein were monitored by time-lapse microscopy of A7r5 cells transfected to express a fluorescent Cx43-green fluorescent protein (GFP) and the ability of the glycoside to modulate endogenous expression of Cx40 and Cx43 evaluated in A7r5 cells by immunochemical and Western blot analysis. 5. Ouabain (1 mM) depressed vesicular trafficking of Cx43-GFP after approximately 1 h, and caused a time-dependent loss of endogenous Cx40 and Cx43 protein that was first evident at 2 h and almost complete after 4 h. These effects of ouabain on Cx expression were reversed 90 min following washout of the glycoside. 6. We conclude that ouabain exerts biphasic effects on intercellular communication that involve an initial decrease in gap junctional permeability followed by a global reduction in the expression of Cx protein. Further studies are necessary to establish to what extent these actions of ouabain reflect inversion of the normal [Na+]i/[K+]i ratio and/or conversion of the Na+/K+-ATPase into a general signal transducer that regulates downstream protein synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.