Abstract

We previously reported that in vivo bone formation could be observed in composites of porous hydroxyapatite (HA) scaffolds and cultured mesenchymal stem cells (MSCs). In the present study, we developed a new method for transplantation of cultured MSCs without the necessity of using a scaffold to form bone tissue. MSCs were culture-expanded and lifted as cell sheet structures. These cell sheets, designated osteogenic matrix sheets, showed positive alkaline phosphatase (ALP) staining, high ALP activities and high osteocalcin (OC) contents, indicating their osteogenic potential. We transplanted these sheets into subcutaneous sites in rats to assess whether they possessed in vivo bone-forming capability. The transplanted sheets showed mineralized matrix together with osteocytes and an active osteoblast lining, indicating new bone formation, at 6 weeks after transplantation. HA scaffolds were also wrapped with the sheets to make HA/sheet composites and implanted into subcutaneous sites in rats. Histological sections of the composites revealed bone formation in the HA pores at 4 weeks after implantation. Our present results indicate that MSCs can be cultured as sheet structures, and the resulting sheets themselves or HA-sheet composites represent osteogenic implants that can be used for hard tissue reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.