Abstract

Optimised nanotopography with controlled disorder (NSQ50) has been shown to stimulate osteogenesis and new bone formation in vitro. Following osteointegration the implant interface must undergo constant remodeling without inducing immune response. We aimed to assess the effect of nanotopography on bone remodelling using osteoclast and osteoblast cocultures. We developed a novel osteoblast/osteoclast coculture using solely human bone marrow derived mesenchymal and hematopeotic progenitor cells without extraneous supplementation. The coculture was been applied to NSQ50 or flat control polycarbonate substrates and assessed using immunohistochemical and immunofluorescent microscopy, scanning electron microscopy and quantitative reverse-transcription PCR methods. These confirm the presence of mature osteoclasts, osteoblasts and bone formation in coculture. Osteoblast differentiation increased on NSQ50, with no significant difference in osteoclast differentiation. Controlled disorder nanotopography appears to be selectively bioactive. We recommend this coculture method to be a better in vitro approximation of the osseous environment encountered by implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.