Abstract

Performance of a Prognostics and Health Management (PHM) system in a fielded application depends on observability from existing monitoring equipment and sensing, which get determined at the design phase. Although various technologies have been proposed in the literature, there is currently a lack of known generic tools specifically designed for performing design stage sensor placement analyses from a PHM perspective. This leads to PHM observability being an afterthought and resulting PHM designs being sub-optimal. This paper describes a new Optimal Sensor Placement (OSP) framework, its implementation as a toolkit and the experience with applying it to a new product design in the context of a Small Modular Reactor (SMR). The formulation adds multiple important features that are critical to PHM applications. Firstly, it establishes a direct link to PHM performance requirements with intent to reduce operational and maintenance costs. Moreover, it acknowledges and accounts for the costs and risks of errors that PHM system will incur, and simultaneously considers operational requirements on sensing for performance, control and/or regulatory requirements. The toolkit described here implements formulations of a large number of requirements scenarios applicable in a generic industrial product development setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.