Abstract

Postfixation with osmium tetroxide and Epon embedding are essential for the preservation and visualization of subcellular ultrastructures via electron microscopy. These chemical treatments diminish the fluorescent intensity of most fluorescent proteins in cells, creating a problem for the in-resin correlative light-electron microscopy (CLEM) of Epon-embedded mammalian cultured cells. We found that two green and two far-red fluorescent proteins retain their fluorescence after chemical fixation with glutaraldehyde, osmium tetroxide-staining, dehydration, and polymerization of Epon resins. Consequently, we could observe the fluorescence of fluorescent proteins in ultrathin sections of Epon-embedded cells via fluorescence microscopy, investigate ultrastructures of the cells in the same sections via electron microscopy, and correlate the fluorescent image with the electron microscopic image without chemical or physical distortion of the cells. In other words, referred as "in-resin CLEM" of Epon-embedded samples. This technique also improves the Z-axis resolution of fluorescent images. In this chapter, we introduce the detailed protocol for in-resin CLEM of Epon-embedded mammalian cultured cells using these fluorescent proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.