Abstract

It is increasingly apparent that functionally significant neural activity is oscillatory in nature. Demonstrating the implications of this mode of operation for perceptual/cognitive function remains somewhat elusive. This report describes the technique of random temporal sampling for the investigation of visual oscillatory mechanisms. The technique is applied in visual recognition experiments using different stimulus classes (words, familiar objects, novel objects, and faces). Classification images reveal variations of perceptual effectiveness according to the temporal features of stimulus visibility. These classification images are also decomposed into their power and phase spectra. Stimulus classes lead to distinct outcomes and the power spectra of classification images are highly generalizable across individuals. Moreover, stimulus class can be reliably decoded from the power spectrum of individual classification images. These findings and other aspects of the results validate random temporal sampling as a promising new method to study oscillatory visual mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.