Abstract

Magnetic micro-robots have been proposed for use in biomedical applications. These studies focus on locomotion control using a gradient, alternating, and rotating magnetic fields at the sub-micro scale. However, this study focuses on a basic mechanism of active locomotion for diagnostic robots. Furthermore, the digestive intestine in the human body has a complex path in which locomotion methods can become either swimming or walking according to the inner condition. Therefore, we propose a new simple mechanism for amphibious locomotion within a rotating magnetic field using the three-axis Helmholtz coil system. The proposed magnetic robot consists of NdFeB permanent spherical magnets, flexible silicone tubes, and legs. Successive changes of actuation of yaw and roll motions cause alternating and walking motions. Direction of movement is decided by rotating the direction of the magnetic field (clockwise or counter-clockwise). In addition, turning directions are decided by the plane of the rotating magnetic field. A magnetic torque between the rotating magnetic field and the magnetic moments produce a constant walking pattern similar to a trotting gait. In addition, an oscillatory motion of the flexible robot body can generate a thrust force in the liquid. Finally, through the various experiments, we evaluate the capability of the locomotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.