Abstract

We investigate the oscillatory reaction dynamics in a closed isothermal chemical system: the reversible Lotka-Volterra model. The second law of thermodynamics dictates that the system ultimately reaches an equilibrium. Quasistationary oscillations are analyzed while the free energy of the system serves as a global Lyapunov function of the dissipative dynamics. A natural distinction between regions near and far from equilibrium in terms of the free energy can be established. The dynamics is analogous to a nonlinear mechanical system with time-dependent increasing damping. Near equilibrium, no oscillation is possible as dictated by Onsager's reciprocal symmetry relation. We observe that while the free energy decreases in the closed system's dynamics, it does not follow the steepest descending path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.