Abstract
The use of mouse models is indispensable for studying the pathophysiology of various diseases. With respect to lung cancer, several models are available, including genetically engineered models as well as transplantation models. However, genetically engineered mouse models are time-consuming and expensive, whereas some orthotopic transplantation models are difficult to reproduce. Here, a non-invasive intratracheal delivery method of lung tumor cells as an alternative orthotopic transplantation model is described. The use of mouse lung adenocarcinoma cells and syngeneic graft recipients allows studying tumorigenesis under the presence of a fully active immune system. Furthermore, genetic manipulations of tumor cells before transplantation makes this model an attractive time-saving approach to study the impact of genetic factors on tumor growth and tumor cell gene expression profiles under physiological conditions. Using this model, we show that lung adenocarcinoma cells express increased levels of the T-cell suppressor programmed death-ligand 1 (PD-L1) when grown in their natural environment as compared to cultivation in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.