Abstract
Frequency combs play a crucial supporting role for optical clocks by allowing coherent frequency division of their output signals into the electronic domain. This task requires stabilization of the comb's offset frequency and of an optical comb mode to the clock laser. However, the two actuators used to control these quantities often influence both degrees of freedom simultaneously. This non-orthogonality leads to artificial limits to the control bandwidth and unwanted noise in the comb. Here, we orthogonalize the two feedback loops with a linear combination of the measured signals in a field-programmable gate array. We demonstrate this idea using a fiber frequency comb stabilized to a clock laser at 259 THz, half the frequency of the 1S0→3P0 Yb transition. The decrease in coupling between the loops reduces the comb's optical phase noise by 20 dB. This approach could improve the performance of any comb stabilized to any optical frequency standard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.