Abstract

Kiers (1991) considered the orthogonal rotation in PCAMIX, a principal component method for a mixture of qualitative and quantitative variables. PCAMIX includes the ordinary principal component analysis (PCA) and multiple correspondence analysis (MCA) as special cases. In this paper, we give a new presentation of PCAMIX where the principal components and the squared loadings are obtained from a Singular Value Decomposition. The loadings of the quantitative variables and the principal coordinates of the categories of the qualitative variables are also obtained directly. In this context, we propose a computationaly efficient procedure for varimax rotation in PCAMIX and a direct solution for the optimal angle of rotation. A simulation study shows the good computational behavior of the proposed algorithm. An application on a real data set illustrates the interest of using rotation in MCA. All source codes are available in the R package "PCAmixdata".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.