Abstract

High silicon content aluminum alloy (hypereutectic) possess good tribological characteristics with low coefficients of friction, when embedded with short carbon fiber (Csf), making this composite a good material choice where good wear and high strength properties are required in light weight components. There is no previously published information available, to the knowledge of the authors, regarding the influence of wear parameters and their interactions on the tribological behavior of Csf reinforced metal matrix composites. In this study a Taguchi design of experiment (DoE) was conducted to optimize and analyze the effects of the wear parameters on the tribological properties of Al/Csf metal matrix composite. A novel thixomixing method which was used to process the metal within the semisolid state was employed to embed short carbon fibers homogenously into the metal matrix. The influences of the sliding speed, applied load and volume fraction, of Csf on the specific wear rate and coefficient of friction were examined, with each of these input parameters tested at three levels(0, 4.2, 8.1%vol.). The results were indicated that Al/Csf composite had better tribological properties than Al alloy due to which contains carbon as solid lubricant. According to the statistical analysis, the influence of volume fraction of carbon fiber on wear parameters was ranked first; so the load and sliding speed are at the following rankings. The contribution percentage for each parameter was determined by the analysis of variance. The relatively good interfacial adherence of carbon fiber and matrix alloy were demonstrated. The coherent and adherent graphite-rich layer on the worn surface was characterized using scanning electron microscopy (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.