Abstract

A theoretical model is presented for the interaction of a quantum system with an orthogonal polarized entangled photon-pair measurement probe. The theoretical framework is based on solving the generalized Jaynes-Cummings and Shroeder's equations to determine the phase evolution of the interacting system. The measurement-induced decoherence is expressed in terms of the temporal evolution of the relative phases of the superposition states induced by the measurement probe. The method is applied to determine the rate of decoherence of a two-qubit rubidium quantum system. Quantitative results are given to contrast measurement-induced of (i) single photon probe and (ii) orthogonal polarized and entangled probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.