Abstract

Abstract. In recent years much attention has been devoted to the investigation of the impact of increasing the horizontal resolution of global climate models. In the present work, a set of atmosphere-only idealized sensitivity simulations with EC-Earth3 has been designed to disentangle the relative roles of increasing the resolution of the resolved orography and of the atmospheric grid. Focusing on the Northern Hemisphere winter, it is shown that if the grid is refined while keeping the resolved orography unchanged, model biases are reduced only on some specific occasions. Conversely, increasing the resolved (or mean) orography is found to clearly reduce several important systematic model errors, including synoptic transient eddies, the North Atlantic jet stream variability, and atmospheric blocking frequency and duration. From an analysis of the radiation budget it is concluded that the large changes in radiative fluxes caused by the resolution increase – something commonly observed in climate models – have a relevant impact on the atmospheric circulation, partially offsetting the benefits obtained from the increase in orographic resolution. These findings point to the necessity of always tuning climate models to fully exploit the benefits of high horizontal resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.