Abstract

The construction of an embryo from a single cell precursor is a highly complex process. Evolutionary emergence of the first embryos is even more complex, and involves both a transition to multicellularity along with the establishment of developmental mechanisms. We propose that embryogenesis relies on a community of cells conforming to a regulatory model of emergent multicellularity. This model draws together multiple threads in the scientific literature, from complexity theory to cybernetics, and from thermodynamic entropy to artificial life. All of these strands come together to inform a model of goal-oriented regulation for emergent structures in early life. This is an important step in the evolution of early life, as well as the emergence of complex life in the earliest habitats. Our model, called the cybernetic embryo, allows for a systems-level view of the embryogenetic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.