Abstract
A Monte Carlo simulation of ion-induced kinetic electron emission (KE) was carried out to study the material contrast in scanning ion microscope (SIM) images, i.e. secondary electron (SE) yields decreasing with atomic number Z2 of the target, which is opposite to that for scanning electron microscope (SEM) images. The simulations show that SE yields decrease with increasing Z2 for the targets of Al (Z2 = 13), Cu (Z2 = 29) and Au (Z2 = 79) bombarded by 10 approximately 40 keV gallium (Ga) ions. Details of the SE yield according to the collision partners (i.e. Ga ion, recoiled target-atom and excited electron) clarify the origins of material (or Z2) contrast in the Ga-SIM images. Cause and effect on the material contrast are as follows: the heavier (or slower) collision partner transfers less energy to the excited electrons and leads to a poorer multiplication of other excited electrons in the cascade process. The simulation also predicts that the Ga-SIM images are more sensitive to the outermost target surface than the SEM images. material contrast, atomic number contrast, secondary electrons, secondary electron yield, scanning ion microscope, scanning electron microscope
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.