Abstract

Spatial heterogeneity in habitat conditions within a landscape should influence degree of movement of species between natural and artificial environments. For wetland landscapes, this functional connectivity was predicted to emerge from the influence of spatiotemporal patterns of depth on permeability of habitat edges and distance and directedness of cross-habitat dispersal. We quantified how connectivity between canals and marshes of the Florida Everglades varies with species and landscape patterns bordering canals by using radio telemetry to measure movement of a native (Florida largemouth bass, Micropterus salmoides floridanus) and a nonnative species (Mayan cichlid, Cichlasoma urophthalmus) common to canals. Both species moved similar distances inside canal networks, but Mayan cichlids dispersed outside of canals more frequently, at shallower conditions, and over greater distances than Florida largemouth bass. As topographic relief increased in marshes bordering canals, dispersal between these habitats decreased in distance and became more directed, with Florida largemouth bass sensitive to depth variability at a smaller spatial scale than Mayan cichlids. The way fish traits interact with submerged landscape structure to influence connectivity can serve as a basis for predicting potential impacts of artificial habitats that arise from dispersal outside their borders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.