Abstract

The solution of the static traffic assignment problem (TAP) with fixed origin-destination (OD) demands is considered. The original Frank and Wolfe (FW) algorithm is the most widely used in practice while suffering from a sublinear rate of convergence. The OD-based FW (ODBFW) algorithm was an attempt to speed up its convergence. The FW algorithm has been also used to compute search directions by partially solving a sequence of quadratic programming (QP) subproblems in a truncated QP (TQP) framework (FWTQP). In this study, we introduce an OD-based FWTQP (ODFWTQP) algorithm by embedding the decomposition and column generation in the FWTQP algorithm. The convergence rate of the ODFWTQP is investigated on the Chicago and Philadelphia test networks. A direct comparison is done between the proposed ODFWTQP and the algorithms of FW, ODBFW, FWTQP and the origin-based algorithm (OBA). Another direct comparison with a current commercial projected gradient (PG) algorithm is also provided. Based on the numerical results, the proposed algorithm shows a surprising performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.