Abstract

AbstractWe observed two different Verwey transition temperatures in fragments of crystalline basement rocks and impact sediments from the Chesapeake Bay impact structure, USA. Our study aims to the question if this feature can be used as shock indicator in impact craters. We distinguished three generations of magnetite. (1) Primary magnetite in crystalline basement rocks has average grain sizes up to several hundreds of micrometers and shows a regular TV at ≈ 121 K. (2) Shocked magnetite occurs in fragments of crystalline basement rocks and also in the suevite and impact breccia. These magnetites show two Verwey transitions—a regular one and a “low‐temperature transition” (LTV) at around 89 K. LTV is related to a small grain size fraction, whereas a larger grain size fraction (some hundreds of micrometers) causes the regular TV. The small grain size fraction contains a distinctly higher amount of superficially oxidized material due to the high surface/volume ratio, which causes a decrease of the Verwey transition temperature (LTV). (3) A secondary magnetite generation shows also two Verwey transition temperatures, one at 121 K and a LTV range between 91 and 105 K. The LTV in this generation is also linked to thin oxidized surface layers. This study shows that especially the Verwey transition temperature of small magnetite grains reacts very sensitively to surface oxidation and can therefore not be used as a reliable pressure indicator for impact structures on Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.