Abstract

Buffeting flow on transonic aerofoils serves as a model problem for the more complex three-dimensional flows responsible for aeroplane buffet. The origins of transonic aerofoil buffet are linked to a global instability, which leads to shock oscillations and dramatic lift fluctuations. The problem is analysed using the Reynolds-averaged Navier–Stokes equations, which for the foreseeable future are a necessary approximation to cover the high Reynolds numbers at which transonic buffet occurs. These equations have been shown to reproduce the key physics of transonic aerofoil flows. Results from global-stability analysis are shown to be in good agreement with experiments and numerical simulations. The stability boundary, as a function of the Mach number and angle of attack, consists of an upper and a lower branch – the lower branch shows features consistent with a supercritical bifurcation. The unstable modes provide insight into the basic character of buffeting flow at near-critical conditions and are consistent with fully nonlinear simulations. The results provide further evidence linking the transonic buffet onset to a global instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.