Abstract
The temperature $T$ dependence of the normalized magnetization relaxation rate $S$ in optimally doped ${\text{YBa}}_{2}{\text{Cu}}_{3}{\text{O}}_{7\ensuremath{-}\ensuremath{\delta}}$ films with the external dc magnetic field $H$ oriented along the $c$ axis exhibits the well-known plateau in the intermediate $T$ range, associated with the presence of elastic (collective) vortex creep. The disappearance of the $S(T)$ plateau in the high-$H$ domain $(H\ensuremath{\ge}20\text{ }\text{kOe})$ is not completely understood. We show that in the case of high-temperature superconductors with significant quenched disorder the $S(T)$ plateau is directly related to a crossover in the vortex-creep process generated by the macroscopic currents induced in the sample. In dc magnetization measurements the creep-crossover temperature decreases rapidly with increasing $H$, reaching the low-$T$ region where the magnetization decay is dominated by micro flux jumps. Consequently, at high $H$ no well-defined elastic-creep domain is present and the $S(T)$ plateau disappears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.