Abstract

A numerical experiment was carried out to test whether the patchy CO2 emission patterns observed at the Zero Emissions Research and Technology release facility are caused by the presence of packers that divide the horizontal injection well into six CO2-injection zones. A three-dimensional model of the horizontal well and cobble–soil system was developed and simulations using TOUGH2/EOS7CA were carried out. Simulation results show patchy emissions for the seven-packer (six-injection-zone) configuration of the field test. Numerical experiments were then conducted for the cases of 24 packers (23 injection zones) and an effectively infinite number of packers. The time to surface breakthrough and the number of patches increased as the number of packers increased suggesting that packers and associated along-pipe flow are the origin of the patchy emissions. In addition, it was observed that early breakthrough occurs at locations where the horizontal well pipe is shallow and installed mostly in soil rather than the deeper cobble. In the cases where the pipe is installed at shallow depths and directly in the soil, higher pipe gas saturations occur than where the pipe is installed slightly deeper in the cobble. It is believed this is an effect mostly relevant to the model rather than the field system and arises through the influence of capillarity, permeability, and pipe elevation of the soil compared to the cobble adjacent to the pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.