Abstract

The optical properties of ZnO nanorods realized by an advanced low-temperature aqueous chemical growth on both silicon and plastic substrates are presented. Systematic photoluminescence investigations in the temperature range of 4–293K reveal strong and well-resolved near-band-edge emission even for rods on plastic substrate, and a weak deep-level emission. At intermediate temperatures phonon replicas of excitonic lines are observable. The optimum molar concentration range of the solution for obtaining nanorods of good optical quality is shown to lie between 0.025M and 0.075M. The large linewidth of the near-band-edge emission (∼10meV), its temperature dependence, and the absence of sharp excitonic transitions indicate that this emission is a result of transitions from a band of donor states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.