Abstract

The mouse inner cell mass is established by cells that are allocated to internal positions after the 8-cell stage. We analyzed the timing of this allocation by microinjecting two cell lineage markers, horseradish peroxidase and rhodamine-conjugated dextran, into mouse blastomeres at the 8- to 32-cell stage. Prospective analysis was performed by coinjection of peroxidase and dextran, followed by 12–22 hr of culture and staining for peroxidase activity; retrospective analysis was performed by injection of peroxidase alone and localization of sister cells without further culture. Both approaches indicated that cells are allocated to internal positions during the fourth and fifth cleavage divisions, but not the sixth cleavage division, of the mouse embryo. Thus, outer cells can have inner descendants until the late morula/early blastocyst (32-cell) stage, but cells remaining outside after the fifth cleavage division are restricted to a trophectoderm fate. This information about cell lineage indicates that the previously observed totipotency of the cleaving mammalian embryo's cells is a regulative attribute that is used in normal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.