Abstract

AbstractWe test the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the our Galaxy have been the building blocks of the Galactic halo by comparing their [O/Fe] and [Ba/Fe] vs. [Fe/H] patterns with the ones observed in Galactic halo stars. The [O/Fe] ratio deviates substantially from the observed abundance ratios in the Galactic halo stars for [Fe/H] > -2 dex, while they overlap for lower metallicities. On the other hand, for the neutron capture elements, the discrepancy is extended at all the metallicities, suggesting that the majority of stars in the halo are likely to have been formed in situ. We present the results for a model considering the effects of an enriched gas stripped from dwarf satellites on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the adopted infall time-scale, and the presence of a threshold in the gas for star formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.