Abstract

High‐valent tetraalkylcuprates(iii) and ‐argentates(iii) are key intermediates of copper‐ and silver‐mediated C−C coupling reactions. Here, we investigate the previously reported contrasting reactivity of [RM iii Me3]− complexes (M=Cu, Ag and R=allyl) with energy‐dependent collision‐induced dissociation experiments, advanced quantum‐chemical calculations and kinetic computations. The gas‐phase fragmentation experiments confirmed the preferred formation of the [RCuMe]− anion upon collisional activation of the cuprate(iii) species, consistent with a homo‐coupling reaction, whereas the silver analogue primarily yielded [AgMe2]−, consistent with a cross‐coupling reaction. For both complexes, density functional theory calculations identified one mechanism for homo coupling and four different ones for cross coupling. Of these pathways, an unprecedented concerted outer‐sphere cross coupling is of particular interest, because it can explain the formation of [AgMe2]− from the argentate(iii) species. Remarkably, the different C−C coupling propensities of the two [RM iii Me3]− complexes become only apparent when properly accounting for the multi‐configurational character of the wave function for the key transition state of [RAgMe3]−. Backed by the obtained detailed mechanistic insight for the gas‐phase reactions, we propose that the previously observed cross‐coupling reaction of the silver complex in solution proceeds via the outer‐sphere mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.