Abstract

Low symmetry 2D materials offer an alternative for the fabrication of optoelectronic devices which are sensitive to light polarization. The investigation of electron–phonon interactions in these materials is essential since they affect the electrical conductivity. Raman scattering probes light–matter and electron–phonon interactions, and their anisotropies are described by the Raman tensor. The tensor elements can have complex values, but the origin of this behavior in 2D materials is not yet well established. In this work, we studied a single-layer triclinic ReSe2 by angle-dependent polarized Raman spectroscopy. The obtained values of the Raman tensor elements for each mode can be understood by considering a new coordinate system, which determines the physical origin of the complex nature of the Raman tensor elements. Our results are explained in terms of anisotropy of the electron–phonon coupling relevant to the engineering of new optoelectronic devices based on low-symmetry 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.