Abstract

Based on the connection between the spectral form factor and the probability to return, the origin of the $1/f^\alpha$-noise in fully chaotic and fully integrable systems is traced to the quantum interference between invariant manifolds of the classical dynamics and the dimensionality of those invariant manifolds. This connection and the order-to-chaos transition are analyzed in terms of the statistics of Floquet's quasienergies of a classically chaotic driving non-linear system. An immediate prediction of the connection established here is that in the presence of decoherence, the spectral exponent $\alpha$ takes the same value, $\alpha=2$, for both, fully chaotic and fully integrable systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.