Abstract
Abstract We discuss the acceleration and escape of secondary cosmic-ray (CR) nuclei, such as lithium, beryllium, and boron, produced by spallation of primary CR nuclei like carbon, nitrogen, and oxygen accelerated at the shock in supernova remnants (SNRs) surrounded by the interstellar medium (ISM) or a circumstellar medium (CSM). We take into account the energy-dependent escape of CR particles from the SNR shocks, which is supported by gamma-ray observations of SNRs, to calculate the spectra of primary and secondary CR nuclei running away into the ambient medium. We find that if the SNR is surrounded by a CSM with a wind-like density distribution (i.e., n CSM ∝ r −2), the spectra of the escaping secondary nuclei are harder than those of the escaping primary nuclei, while if the SNR is surrounded by a uniform ISM, the spectra of the escaping secondaries are always softer than those of the escaping primaries. Using this result, we show that if there was a past supernova surrounded by a dense wind-like CSM (∼2.5 × 10−3 M ⊙ yr−1), which happened ∼1.6 × 105 yr ago at a distance of ∼1.6 kpc, we can simultaneously reproduce the spectral hardening of primary and secondary CRs above ∼200 GV that have recently been reported by AMS-02.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.