Abstract
The observation of peaks in the threshold region of two-body neutral fragmentation of methane molecule, i. e., CH4 →CH3 +H, by low energy electron (LEE) impact has been an enigma. The prevailing explanation that this resonant behavior is due to excitation energy transfer is unsatisfactory since this process is not expected to show peaks in the cross-sections unless there is the involvement of electron-molecule resonances. Our first-principles calculations now reveal that the observed peaks could be explained as due to the formation of negative ion resonances, which dominantly dissociate into two neutral fragments and a free-electron. This case of methane is a pointer to the possibility that such reactions contribute significantly to neutral radical production from molecules by LEE impact in comparison to dissociative electron attachment, and in general could play a significant role in electron-based chemical control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.