Abstract

Acetate is a central intermediate in the anaerobic degradation of organic matter, and the resolution of its metabolism necessitates integrated strategies. This study aims to (1) estimate the contribution of acetogenesis to acetate formation in an acidic fen (pH ~ 4.9), (2) assess the genetic potential for acetogenesis targeting the fhs gene encoding formyltetrahydrofolate synthetase (FTHFS) and (3) unravel the in situ turnover of acetate using stable carbon isotope pore-water analysis. H(2)/CO(2)-supplemented peat microcosms yielded (13)C-depleted acetate (-37.2‰ vs. VPDB (Vienna Peedee belemnite standard) compared with -14.2‰ vs. VPDB in an unamended control), indicating the potential for H(2)-dependent acetogenesis. Molecular analysis revealed a high diversity and depth-dependent distribution of fhs phylotypes with the highest number of operational taxonomic units in 0-20 cm depth, but only few and distant relationships to known acetogens. In pore waters, acetate concentrations (0-170 μM) and δ(13)C-values varied widely (-17.4‰ to -3.4‰ vs. VPDB) and did not indicate acetogenesis, but pointed to a predominance of sinks, which preferentially consumed (12)C-acetate, like acetoclastic methanogenesis. However, depth profiles of methane and δ(13)C(CH4) revealed a temporarily and spatially restricted role of this acetate sink and suggest other processes like sulfate and iron reduction played an important role in acetate turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.