Abstract
We provide a link between topological graph theory and pseudoline arrangements from the theory of oriented matroids. We investigate and generalize a function f that assigns to each simple pseudoline arrangement with an even number of elements a pair of complete-graph embeddings on a surface. Each element of the pair keeps the information of the oriented matroid we started with. We call a simple pseudoline arrangement triangular, when the cells in the cell decomposition of the projective plane are 2-colorable and when one color class of cells consists of triangles only. Precisely for triangular pseudoline arrangements, one element of the image pair of f is a triangular complete-graph embedding on a surface. We obtain all triangular complete-graph embeddings on surfaces this way, when we extend the definition of triangular complete pseudoline arrangements in a natural way to that of triangular curve arrangements on surfaces in which each pair of curves has a point in common where they cross. Thus Ringel's results on the triangular complete-graph embeddings can be interpreted as results on curve arrangements on surfaces. Furthermore, we establish the relationship between 2-colorable curve arrangements and Petrie dual maps. A data structure, called intersection pattern is provided for the study of curve arrangements on surfaces. Finally we show that an orientable surface of genus g admits a complete curve arrangement with at most 2 g + 1 curves in contrast to the non-orientable surface where the number of curves is not bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.