Abstract

Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.

Highlights

  • Complex morphology is an evolutionary outcome of phenotypic diversification

  • Our results show that local changes in the Phloem Xylem c ph ph tu ke tu ke d xy xy tu ke tu sh orientation of cell division lead to the novel morphology of pitcher leaves

  • When a primordium becomes B100 mm long, an adaxial ridge connecting both sides of a leaf margin appears in the middle of the primordium (Fig. 1g), which is similar to the ‘cross zone’ protrusions in peltate leaves of T. majus[11] and pitcher leaves of D. californica[15]

Read more

Summary

Introduction

Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. We show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. The abaxial FIL expression pattern in the primordium of a peltate leaf is initially indistinguishable from that of a conventional bifacial leaf, but later FIL is expressed on both adaxial and abaxial sides of the primordium, in the proximal region where the unifacial petiole develops, leaving a bifacial structure in the distal region where the lamina forms[11] (Supplementary Fig. 1). We examined the cell division pattern during pitcher development and found that oriented cell divisions in the adaxial tissue form a novel morphogenetic pattern that is distinct from that of both conventional bifacial and peltate leaves. Our results show that local changes in the Phloem Xylem c ph ph tu ke tu ke d xy xy tu ke tu sh

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.