Abstract
Based on the three-order-parameter model, we investigate the orientational order transition of striped patterns in microphase structures of diblock copolymer-homopolymer mixtures in the presence of periodic oscillatory particles. Under suitable conditions, although the macrophase separation of a system is almost isotropic, the microphase separation of the system will be significantly perturbed by the oscillatory field, and composition fluctuations are suppressed anisotropically. The isotropy of the microphase will be broken up. By changing the oscillatory amplitude and frequency, we observe the orientational order transition of a striped microphase structure from the isotropic state to a state parallel to the oscillatory direction, and from the parallel state to a state perpendicular to the oscillatory direction. We examine, in detail, the microstructure and orientational order parameter as well as the domain size in the process of orientational order transition under the oscillatory field. We study also how the microphase structure changes with the composition ratio of homopolymers and copolymers in mixtures. The results suggest that our model system may provide a simple way to realize orientational order transition of soft materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.