Abstract

The crystallographic orientation relations of phases forming during the martensitic transformation determine the properties of alloys. In TRIP/TWIP steels, the circumstances of thermomechanical treatment (e.g. temperature, deformation) define the forming of martensites of different origins. Due to the thermomechanical treatment, thermally induced martensite (εTH), strain induced martensite (εD) and α’ martensite phases are present in the samples besides the austenite. The proportion of martensites in the sample is defined by the parameters of treatment. The thermally and strain induced martensites which are simultaneously present in the alloy at room temperature can be differentiated by the orientation relations.The martensitic transformations were followed by different methods in FeMn alloys with different Cr content. The macroscopic crystallographic anisotropy was measured by X-ray diffraction method; the microscopic one was examined by EBSD. The cognition of phenomenon observed in the texture image in different scales helps determine the possible origin of martensites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.