Abstract

Corotating Interaction Regions (CIRs) are complex structures in the Heliosphere that arise from the interaction of fast and slow solar wind streams. The interface between fast and slow solar wind is called the stream interface, which often has considerable north-south tilt. We apply a sliding window correlation method on multi-spacecraft data in order to obtain the time delay between the spacecraft. Using these time delays and in-situ solar wind velocity measurements, we can shift the positions of two spacecraft, and, together with the position of the reference spacecraft, we can reconstruct the spatial orientation of the stream interface. We examined four CIRs from two different solar sources at the beginning of 2007 using ACE, WIND, and STEREO-A spacecraft data. The gradually increasing distance between STEREO-A and the other spacecraft provides an opportunity to determine the effects of spacecraft separation on the quality of the results. In three out of the four events, the determined planes generally follow the Parker spiral in the ecliptic, their off-ecliptic tilt is determined by the position of the source of the high-speed stream. For the fourth event, STEREO-A was probably too far away for this method to be successfully applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.