Abstract
Owing to high thermal conductivity (k) and appropriate coefficient of thermal expansion (CTE), Diamond/copper (Dia/Cu) composites have attracted extensive attention as advanced thermal management materials, but also suffered with low thermal boundary conductance (G). This is because complex energy carrier behaviors at metal/nonmetal interfaces. Although conventional carbide forming interlayers may serve as acoustic matching bridge, crystallographic orientation is still critical to influence heat transport characteristics of Dia/Cu interface. In this work, both theoretical calculations and time-domain thermoreflectance (TDTR) results revealed two distinct G of (100) and (111) Dia/Cu interfaces. We then applied an easy-controlled ion-beam bombardment technique to reduce the orientation dependent G, and two different trends are observed with ion-bombardment time (t): (1) when t < 30 min, G increases with increasing t; (2) when t > 30 min, G decreases with increasing t. Our microstructural and surface potential analysis suggests sp3-to-sp2 hybridization and formation of nanoscale amorphous carbon (a–C) layer at the diamond surface. The coupling between electrons in Cu and a–C provides an additional heat transport pathway, however, the interfacial defect scattering becomes dominant when continuously increasing ion-bombardment time. The present findings may provide more insight to understand the orientation dependent heat transport mechanisms at metal/nonmetal interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.