Abstract

The activities of the oxygen evolution reaction (OER) on IrO2 and RuO2 catalysts are among the highest known to date. However, the intrinsic OER activities of surfaces with defined crystallographic orientations are not well-established experimentally. Here we report that the (100) surface of IrO2 and RuO2 is more active in alkaline environments (pH 13) than the most thermodynamically stable (110) surface. The OER activity was correlated with the density of coordinatively undersaturated metal sites of each crystallographic facet. The surface-orientation-dependent activities can guide the design of nanoscale catalysts with increased activity for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.