Abstract

Variations in deformation kink band formation behavior with loading orientation were examined by the combination of experiment and computer simulation, using the Zn single crystal as a model material. Based on the results, the controlling factors for the formation behavior of deformation kink bands and its general features were discussed. Due to compression parallel to the basal plane, several deformation bands formed in the Zn single crystal. By the examination of the crystallographic nature of the deformation bands, they were found to exhibit three characteristic features: an ambiguous crystal rotation axis on the [0001] zone axis, an arbitrary rotation angle with a wide variation, and a variation in the crystal rotation angle within the deformation band boundary itself. In addition, an analysis protocol to classify the nature of the deformation bands via the observation on (0001) was newly proposed. As a result, the deformation bands formed in the Zn single crystal were confirmed to be predominantly deformation kink bands rather than deformation twining.Among the abovementioned three crystallographic features, we first experimentally confirmed by using the single crystal that the variations in the rotation axis in deformation kink bands exhibit a strong dependence on loading orientation. Using computer simulation based on the crystal plasticity finite element analysis, the origin of the variation in rotation axis in deformation kink bands was clarified to be due to the initiation of different types of basal dislocations that construct the deformation kink band boundaries, which depends on the loading orientation. In addition, the variations in types of the dislocations owing to the internal stress were found to cause the significant waviness of the deformation band boundaries on (0001) specimen surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.