Abstract

While few studies show only symmetrical and poorly mono-SOn (n = 0–2) substituted acenes, in this study, we present a synthesis of a new group of unsymmetrical, significantly substituted derivatives, which revealed unique photophysical properties. Both sulfides (S), sulfoxides (SO) and sulfones (SO2) showed very high photochemical stabilities, unusual for these groups, during UV-irradiation at 254/365 nm (air O2 and Ar), which was higher than any found in the literature. For the (S)/(SO) series (254 nm), the stabilities of 80–519 min. (air O2 and Ar) were found. At 365 nm, stabilities of 124—812 min./(air O2) for (S)/(SO) and higher for (SO2) were observed. Photoluminescence lifetimes of (SOn) of the lower anthryl symmetry remained in the following order: (SO2) < (S) < (SO); those with full symmetry were in the following order: (S) < (SO) < (SO2). The enhanced photostability was explained with DFT/MS/Hammett’s constants, which showed the leading role of the SOn groups in stabilization of HOMO/LUMO frontier orbitals. The SOn (n = 0–2) substituted acenes turned out to be tunable violet/blue/green emitters by oxidation of S atoms and the introduction of rich substitution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.