Abstract

Organometallic polymers can be successfully synthesized on a Ag(111) surface via a surface-assisted synthesis by choosing prochiral 4,4'-dibromo-2,2'-bis(2-phenylethynyl)-1,1'-biphenyl (DBPB) molecules as the designed precursor. High-resolution scanning tunneling microscopy investigation reveals that prochiral molecules show chirality on a surface and can evolve into organometallic chains on the Ag(111) surface based on Ullmann coupling. Due to the special structural features of DBPB molecules, chiral selectivity will be lost in the organometallic polymers. This result may provide an important basis for selecting suitable precursors to fabricate chiral covalent nanostructures on a surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.