Abstract
Mitochondria play a critical role in cellular communication, cell proliferation, and apoptosis, which make them essential to maintaining cellular health. Recently, mitochondrial transplantation has emerged as a promising therapeutic approach to treat conditions such as ischemia, neurodegenerative diseases, and cardiovascular disorders by restoring mitochondrial function in damaged cells. Despite its potential, understanding mitochondrial behavior in vivo remains challenging; however, organoid models, which are three-dimensional structures derived from stem cells that mimic human tissues, offer a solution to study mitochondrial function and transplantation strategies under controlled conditions. These models are particularly necessary in studies, as they can replicate disease conditions and consequently enable researchers to investigate mitochondrial dynamics and therapeutic integration. Developing organoid systems optimized for mitochondrial transplantation requires exploring factors that influence mitochondrial uptake, refining transplantation strategies, and understanding their role in cellular regeneration in order to advance in the field of mitochondrial research.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have