Abstract

Intracellular cyclic GMP concentration is known to change in response to a wide variety of agents, including hormones, neurotransmitters or light. In vertebrate photoreceptors, different membrane-bound guanylate cyclase isoforms are responsible for cGMP synthesis and thus directly involved in termination of light signalling via the phototransduction cascade and recovery of the dark state. We have characterized a 4.7 kb long cDNA for the canine retinal guanylate cyclase isoform E (cGC-E) predicting a polypeptide of 1109 amino acids. The genomic structure and the complete sequence of the canine GC-E gene, which consists of 20 exons and spans about 14.5 kb, has also been determined. Northern blot analysis showed that GC-E was expressed in the canine retina as a 4.7 and 6.1 kb large transcript. RT-PCR analysis also detected low expression in cerebrum (occipital lobe). We performed a sequence analysis of the cGC-E gene in animals of a Swedish Briard and Briard–Beagle dog kinship in which an inherited retinal dystrophy is segregating. Several intragenic DNA polymorphisms were identified and used for segregation analysis which excluded cGC-E as a candidate gene for this type of canine retinal dystrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.