Abstract

In this paper, several organic-inorganic composites were prepared for Terahertz (THz) devices fabrication. First, a two-layer structure was designed for femtosecond (fs) laser/THz radiation separation. The top layer was made by sintered 20-40 nm hollow quartz particles which can diffuse the incident fs laser thus decrease the power intensity. The bottom layer comprised of silicon 100 nm particles and cycle-olefine polymer (COP), by which the fs laser light can be greatly scattered and absorbed but THz radiation can propagate insusceptibly. With this two-layer structure a high efficient fs-laser/THz filter was fabricated successfully. Second, titania–polymer composites with a very high refractiveindex tunability and high transparency in the THz region were prepared. By controlling the blending ratio of the titania particle, a broad refractive-index tuning range from 1.5 to 3.1 was realized. Then, the composites were used to fabricate antireflective (AR) layers on a high-resistivity silicon (HR-Si) substrate. By utilizing the thermoplasticity of the titania– polymer composite, a graded-index structure was fabricated via a hot-embossing method. Because of the good refractive-index matching between the composite and the HR-Si substrate, a broadband AR layer was fabricated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.