Abstract

One reason that metal nanoparticles encapsulated in metal−organic frameworks are of interest is that confinement effects on the particle size and shape may lead to superior catalytic activity. The interior of a metal–organic framework has the potential to influence nucleation and aggregation of metal nanoparticles and to strongly affect their in situ shape and electronic properties. We apply density functional theory and ab initio molecular dynamics (AIMD) to model the nucleation and diffusion of Cun (n = 1–19) clusters on the tetratopic 1,3,6,8-(p-benzoate)pyrene (TBAPy4–) linkers of NU-1000 frameworks. We find that Cu atoms and Cu clusters are stabilized by the TBAPy linker, especially by the edge site of aromatic rings. The stabilization increases when the Cu cluster interacts with two linkers. We identified the most favorable site for Cu cluster adsorption as the window site that connects the c pore and the triangular pore. A Pt atom is found to bind much more strongly than a Cu atom on the TBAPy link...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.