Abstract

The promise of organic ionic plastic crystals (OIPCs) for development of a novel type of gas separation membrane with competitive gas selectivity for CO2 /N2 was recently demonstrated. This work aimed to design more selective membranes by investigating a different type of OIPC and a new membrane preparation method. Two different OIPCs were solvent-cast or co-cast with poly(vinylidene difluoride) (PVDF), and their gas transport properties were compared. The first OIPC, methyl(diethyl)isobutylphosphonium hexafluorophosphate ([P122i4 ][PF6 ]), was previously studied using the co-cast method, and this was used as a benchmark. The second, N-methyl-N-ethylpyrrolidinium bis(fluorosulfonyl)imide ([C2 mpyr][FSI]), was investigated for the first time for gas separation applications, achieving high selectivities (α >40). The thermophysical properties of the composites indicated that the co-casting method is a good way to fabricate solid, mechanically stable and durable membranes. Additionally, the enhanced molecular interactions indicated in OIPC/PVDF co-cast composites point to a new approach for synthesis of other highly selective OIPC-based membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.