Abstract

ABSTRACTTitanium dioxide (TiO2)/graphitic carbon nitride (g‐C3N4) composites were first used as photoinitiator for photochemically mediated controlled/living polymerization of methyl methacrylate. The polymerization was successfully carried out in polyethylene glycol at room temperature with FeCl3·6H2O/N,N,N ′,N ′,N ″‐pentamethyldiethylenetriamine as complex catalyst and ethyl 2‐bromoisobutyrate as initiator in this case. A pseudo‐first‐order dependence of the monomer concentration on the polymerization time was observed. TiO2/g‐C3N4 was verified to be an efficient photoinitiator. The polymerization was controlled to produce poly(methyl methacrylate) with narrow molecular weight distribution and controlled number average molecular weight (Mn,GPC). The Mn,GPC matched well with the theoretical values when using both UV and sunlight irradiation as light source. The effects of reaction conditions on the polymerization were investigated. The polymerization could be started and stopped through periodically switching on/off the light. The living nature was further supported by the chain extension experiments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 42891.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.