Abstract
Organic chloramines (OCs) have become one of the research focuses in the field of drinking water treatment due to its limited oxidation and sterilization ability as well as potential cytotoxicity and genetic toxicity to the public. Among widespread OCs, produced by chlorinating cytosine are a typical one exists during chlorine disinfection. OCs degradation during UV, chlorination and UV/chlorine processes were systematically investigated. UV irradiation at 254nm could effectively degrade OCs by 96.6% after 60min, mainly because N-Cl bond had significant UV absorption at 250-280nm leading to the generation of Cl• and HO•. Direct chlorination had poor removal of OCs with the OCs concentration increased first and then decreased as time went by. On the other hand, the removal of OCs during UV/chlorination was much higher than that during chlorination, but was worse than that during UV alone. pH had a minor effect on OCs decomposition via UV irradiation, whereas the effect was pronounced in the chlorination and UV chlorine processes. UV wavelength can affect the degradation of OCs with efficiency decreased in the order of UV 254>UV 265>UV 275. The total yields of disinfection by-products (DBPs) during the degradation of OCs followed UV/chlorine>UV>chlorination. CH and DCAA were the two dominant types of DBPs among detected 7 DBPs. DBPs yield followed the order of UV254>UV265>UV275 at pH 6.0 and 7.0. After UV 265 irradiation, DBPs yield slightly decreased by 2.4%, 3.0% and 6.6% with the pH increased from 6.0 to 9.0. The results can provide theoretical basis for effective control of OCs in drinking water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.