Abstract

Inflammation-induced disappearance of tissue-resident macrophages represents a key pathogen defense mechanism. Using a model of systemic blood-stage malaria, we studied the dynamics of tissue-resident macrophages in multiple organs to determine how they are depleted and refilled during the course of disease. We show that Plasmodium infection results in a transient loss of embryonically established resident macrophages prior to the parasitemia peak. Fate-mapping analysis reveals that inflammatory monocytes contribute to the repopulation of the emptied niches of splenic red pulp macrophages and hepatic Kupffer cells, while lung alveolar macrophages refill their niche predominantly through self-renewal. Interestingly, the local microenvironment of the spleen and liver can "imprint" the molecular characteristics of fetal-derived macrophages on newly differentiated bone marrow-derived immigrants with remarkably similar gene expression profiles and turnover kinetics. Thus, the mononuclear phagocytic system has developed distinct but effective tissue-specific strategies to replenish emptied niches to guarantee the functional integrity of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.